
International Journal of Theoretical Physics, Vol. 20, No. 7, 1981 

Nucleon-Nucleon Interaction in the 
Three-Nucleon System 

Ahmed Osma~ 

International Centre for Theoretical Physics, Trieste, Italy. 

Received October 21, 1980 

The three-nucleon system is reconsidered. The Faddeev equations are given 
leading to a set of integral equations. Solving these integrai equations, suitable 
forms are considered for the nucleon-nucleon interaction. In the bound state of 
three-nucleon system, the form of the nuclear forces from the nucleon-nucleon 
interaction is important. In the present calculations, we consider the nuclear 
forces resulting from the nucleon-nucleon interaction by the exchange of a 
scalar meson, a pseudoscalar meson, and a massless vector meson. With this 
different meson exchange nucleon-nucleon interaction, the binding energy of the 
three-nucleon system is calculated by solving the Faddeev integral equations 
giving a value of 8.452 MeV. 

I. INTRODUCTION 

The three-nucleon system has been found as one of the most interesting 
systems in studying the static properties of nuclei. One of these properties is 
the nuclear forces, and the nucleon-nucleon interaction. The three-body 
problem has been solved successfully by Faddeev (1960, 1961, 1962). The 
Faddeev technique is more exact than the variational treatment of the 
problem, but it appears as the truncation of the two-body reaction matrix 
by one (or more finite number) pole term. This approximation is discussed 
by Lovelace (1964) on the basis of theoretical considerations. In this 
solution, Faddeev (1960, 1961, 1963, 1965) has shown that a well-behaved 
set of three-body equations involve the two-body T matrix rather than the 
potential. Consequently, the T matrix plays a central role in this approach. 
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This means that in the three-body Faddeev equation, the two-body T matrix 
plays the part of a potential in the two-body Lippmann-Schwinger equa- 
tion. Many authors 2 have shown that the Faddeev equations are reduced to 
a set of coupled, one-dimensional integral equations by using the separable 
(Harrington, 1966; Fulco and Wong, 1968; Osman, 1971, 1978a, b)two-body 
potentials. While for the case of local (Kharchenko et al., 1968; Phillips, 
1968; Kok et al., 1968; Levinger, 1969; Osman, 1979a) potentials, the 
problem becomes difficult since the Faddeev equations are reduced to a set 
of coupled integral equations in two continuous variables. For all these 
potentials, the Faddeev equations remain a well-defined system whatever 
the potential form is. 

The binding energy of the three-nucleon system has been widely 
considered. In calculating the binding energy of 3H and 3He, nonlocal 
separable potentials have been widely used (Lovelace, 1964; Mitra 
et al., 1976; Zingl et al., 1978; Harrington, 1966; Fulco and Wong, 1968; 
Osman, 1970, 1978, 1979a, b, 1980). These separable potentials are taken 
as a central potential containing both attraction and repulsion parts 
(Harrington, 1966; Fulco and Wong, 1968; Osman, 1970) as well as 
containing tensor forces (Osman, 1978c, 1979a, b, 1980). Local potentials 
have been used (Kharchenko et al., 1968; Phillips, 1968; Kok et al., 1968; 
Levinger, 1969; Osman, 1979a) also in calculating the three-nucleon binding 
energy and it is taken to consist of attraction and repulsion parts, 

In the present work, we calculate the binding energy of the three-nucleon 
system. We follow the Faddeev formalism. Faddeev equations are given as a 
well-defined set of coupled integral equations. The nucleon-nucleon inter- 
action which we use in the present work is taken as the exchange of a scalar 
meson, a pseudoscalar meson and a massless vector meson. The equations 
developed for the interactions of these two spin-half nucleons are applied 
through the exchange of massive scalar and pseudoscalar mesons. For the 
low-energy nucleon-nucleon interaction, the difficulties from the intrinsic 
nature of the strong interactions are little in comparison with the unfor- 
tunate fact that the pion is a pseudoscalar particle. This difficulty is 
overcome by considering two-pion exchange which is equivalent to the 
exchange of a scalar meson of distributed mass. 

In Section 2, integral equations are introduced for the nucleon-nucleon 
interaction with the exchange of a scalar meson, a pseudoscalar meson, and 
a massless vector meson. Calculations and results are given in Section 3. 
Section 4 is left for discussion and conclusions. 

2For a review see Mitra et al. (1976); for another recent review see Zingl et al. (1978). 
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Fig, I. Feynman diagrams in second order. The solid lines are the nucleons. The wavy lines 
are the mesons. 

2. N U C L E O N - N U C L E O N  INTERACTION W I T H  M E S O N  
EXCHANGE 

In this section, we consider the nucleon-nucleon interaction with 
meson exchange. The nucleons are considered as particles 1 and 2 each with 
mass M. While the meson exchanged between the nucleons in successive 
processes is taken with a mass m, where m<<M. The Feynman representa- 
tion for the perturbation series of the nucleon-nucleon interaction by the 
successive exchange of the mesons are represented diagrammatically in 
Figure 1. The explicit considerations are given in Figure 2 for the fourth 

1 �89 �89 �89 

t p-~ k-p' 
2 ~ I ,~ ~z-p 1z~-k 1Z -P' 

(a) 

I IZ~p �89 +p-k �89 

(b) 

Fig. 2. Feynman diagrams in fourth order. The solid lines are the nucleons. The wavy lines are 
the mesons. 
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order, and in Figure 3 for the sixth order. The solid lines are the nucleons 
and the wavy lines are the mesons. The scattering amplitudes of these 
diagrams are given in integral equations. As an example, the scattering 
amplitude in second order as shown in Figure 1 is given by 

T(2):-g2mM/[rn2-(p-p') 2] (1) 

where g is the dimensionless coupling constant. This expression given by 
equation (1) is the usual nonrelativistic first Born approximation. The 
second Born approximation is given by the fourth-order diagrams shown in 
Figure 2. 

�89 �89 lz+k 2 1Z+p' 1Z+p lz+ p'+ P-k2 lz+p',,-p ~kl�89 + p ' 

�89 {-z-h, �89 " " " ' 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 3. Feynman diagrams in sixth order. The solid lines are the nucleons. The wavy lines are 
the mesons. 
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In the present work, we are interested in nucleon-nucleon interaction 
with meson exchange. We study here the exchange of a scalar meson, a 
pseudoscalar meson, and a massless vector meson. 

(i) Scalar-Meson Exchange. If we restrict ourselves to the cases that 
the external particles are on the mass shell, then the scattering amplitude for 
the second-order T~(r m which is the first Born approximation is given by the 
same expression given by equation (1). For the fourth-order diagrams shown 
in Figure 2 which include the second Born approximation, the scattering 
amplitude T~(4_ ~) representing Figure 2a is given by 

Ts(4a)- 4ig4M 4 d4k 
- (2rr)4 f[(M2+k2)l/2-(M2_k2)1/212_k2_ir 

• 
[(M 2 +k 2 ),/2+ (M 2 _ k  2)W:]2_k 2 --ic 

• 
[m 2 + (p-k)2-k02 - i , ]  2 

+ - -  

X 

g4 
4(2~) 3 f d3k 

{m 2+(p_k)2_[  ( M 2 + k 2 ) l / 2  (M2 k2)1/212}2 

1 

{m 2+(p_k)2_[ (M2+k2) l /2+  (M2 k2),/212}2 

• { 1 [_  8(p.k)k2 +4k2(rn2 ~p 2 ) [m2+(p--k)2] 1/2 

-- 4MZ(p-- k) 2 + 12(p.k)2--4m2M 2] 

1 
( M2 +k2) 1/2 [_8(p.k)k 2 +4k2(m: _p2 _ M  2 ) 

+4(p-k)2+4m2M2]}. (2) 
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For the second part of the fourth order given by the crossed-box 
diagram represented by Figure 2b, it gives a contribution which is smaller 
than that given by the uncrossed-box diagram. This is because in the case 
described by Figure 2b, it requires the existence of two mesons at the same 
time, which means that the nucleons must be farther off their mass shell. 
Neglecting retardation, for the case when the interaction is instantaneous, 
the contribution from the crossed-box is very small and it may be sup- 
pressed. The diagram in Figure 2b gives 

_ ig4m2M 2 d4k 
T(4b) (27r)4 f 

M 2 +(2p-k)2-[(M2-k2)l/2-ko]2- & 

X 
MZ+kZ-[(M2-k2)' /2-ko]2-& 

1 
X (3) 

[m2+(p-k)2-k2--&] 2 

(ii) P s e u d o s c a l a r - M e s o n  Exchange. In this case for nucleon-nucleon 
interaction with pseudoscalar-meson exchange, if we restrict ourselves to 
the case of scattering in the forward direction, then the second-order 
scattering amplitude Zp(2) m v a n i s h e s  because of some off-diagonal nature 
present in the matrix. Thus, 

Tp(~)_ m =0  (4) 

For the fourth-order terms, we have for the scattering amplitude arising 
from the uncrossed-box shown by Figure 2a, the expression 

Zp(4a) __ ig 4 d4k[ M-ol'(1z+k )] 
~-m ( 2 ~ r ) , / [ ( M 2 + k 2 ) , / 2  (M2 k2)1/212 k~_ & 

X 
[M-o2"(�89 

[ (M 2 + k  2)1/2+(M 2_k 2)1/2]z k2_ie 

1 
x (5) 

[m 2 + (p-k)2-k02 - i , ]  2 
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This expression is dealt with in detail and by neglecting terms of order 
p/M, we get 

 ,4o, s-m 32~.ZM 2 �9 In - 1 (6) 

which has a large contribution, and so the full interaction must be treated. 

(iii) Massless Vector -Meson  Exchange. For the case of nucleon- 
nucleon interaction with a massless vector-meson exchange, the scattering 
amplitude for the fourth-order diagrams of the uncrossed-box represented 
by Figure 2a is given by 

Zm(4a) - _ _  v--m 
ig 4 d4k 

f [(k-p)2--i,] [(k-p')2--i,] 
1 

x [M2+kZ_(�89 i,][M2+kZ_(�89 i,] (7) 

The whole contribution of this type of interaction will be clear, if we add the 
contributions coming from the fourth-order diagrams of the crossed-box 
and shown in Figure 2b. By adding the contributions from Figure 2b to that 
given by equation (7), we get 

T (m4v)_ m - -  2ig 4 
(2~r) 4 f 

d4k 
[(k-p)2-i,]{MZ+kZ-[(MZ-k2)'/Z-Po-ko]2-i,} 

X 
M 2 -  ( 2 p - k ) 2 - - [ ( M  2 -k2)l/2+po-ko]2-ir 

1 
X (8) 

M2+k2-[(MZ-kZ)l/2+po-ko]2-ir 

3. CALCULATIONS AND RESULTS 

From these scattering amplitudes introduced in Section 2, we can get 
the corresponding bound-state equations. Since all these equations can be 
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written in a form as 

T(p, p',Z)=B(p, p',Z)+ (~)4 f d4kB(p,k, Z) 

x (z, k)T(k, p', z) (9) 

B(p,  p', Z)  is the interaction kernel, while K(Z, k) is the corresponding free 
two-body propagator. Defining the two-body bound-state amplitudes, then, 
we could proceed to the three-body problem. 

We are interested in the present work with the three-nucleon bound- 
state. For the present case of the three-nucleon system, we follow the 
Faddeev formalism. The Faddeev equations for this three-nucleon bound- 
state have been widely considered. The resulting three-body integral equa- 
tions are given explicitly (Harrington, 1966; Fulco and Wong, 1968; Osman 
1970, 1971, 1978a-c; 1979a, b; 1980; Kharchenko et al., 1968; Phillips, 
1968; Kok et al., 1968; Levinger, 1969). These equations are applied 
(Osman, 1970, 1978c, 1979a, b, 1980) for different potentials. 

In the present work, we use the Faddeev equations which are given 
explicitly (Osman, 1971, 1978a, b) together with the two-body interactions 
considered in the present work. 

Performing huge numerical calculations, we calculate the three-nucleon 
binding energy. We obtained for the bound-state three nucleons, a numeri- 
cal value of 8.452 MeV. This value is very close to the experimental value of 
8.48 MeV. Thus the present theoretically calculated value for the three- 
nucleon binding energy differs from the experimental value with a per- 
centage of 0.9213%. 

4. DISCUSSION AND CONCLUSIONS 

It is very interesting to calculate the three-nucleon binding energy using 
a realistic potential. The nucleon-nucleon interaction considered in the 
present work is the meson exchange potential. Different meson exchange 
processes are considered. Calculations are performed for the nucleon- 
nucleon interaction with the exchange of a scalar meson, a pseudoscalar 
meson and a massless vector meson. The very close agreement between the 
present theoretically calculated value and the experimental value means that 
the meson exchange nucleon-nucleon interaction is one of the most realistic 
potentials. In these calculations, we used contributions arising from second- 
order and fourth-order terms and also a notice about the sixth-order terms 
is introduced. In the process of calculations, it appears that restricting one 
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particle to the mass shell can be reintroduced by adding more number of 
terms ~ to be included in the kernel. These new added terms to the kernel 
tend to cancel some of the old terms resulting in better physical agreements. 
In spite of some ideas before stating that the crossed-box graph cancels the 
uncrossed-box graph in the fourth-order terms, it appears that in other 
approaches the cancellation is not complete for the two fourth-order dia- 
grams. This is very clear from the numerical agreement between the theory 
and the experiment in calculating the three-nucleon binding energy. 
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